
Tracking the dynamics of T-cell activation in response to
Salmonella infection

Introduction

Salmonella enterica are Gram-negative bacteria that infect

humans and animals, causing a spectrum of disease ran-

ging from systemic infection to gastroenteritis, depending

on the particular bacterial serovar and the host species

infected.1 Typhoid fever is a systemic disease caused by

Salmonella enterica, serovar typhi, a highly invasive enteric

pathogen found almost exclusively in developing counties.

According to World Health Organization estimates,

the annual global incidence of typhoid fever is around

16 million cases per year, and accounts for 600 000 deaths.

Salmonella enterica serovar typhimurium (hereafter

referred to as S. typhimurium) infection of susceptible

mouse strains causes an invasive systemic disease that is

similar in many respects to typhoid fever.2 This model is

widely accepted as the best experimental system for study-

ing human typhoid fever and has proved extremely valu-

able in uncovering mechanisms of innate and acquired

immune resistance to intracellular pathogens.

Immune responses to Salmonella in mice

Host defence against S. typhimurium infection requires

significant contributions from both the innate and

acquired arms of the immune system.1,3 The initial stages

of infection are characterized by an innate immune

response triggered by host recognition of several micro-

bial structures4 including pathogen-associated mole-

cular patterns such as flagellin, lipopolysaccaride (LPS),

and lipoproteins. Each of these bacterial products can

induce the production of inflammatory cytokines that are

likely to contribute to the initial control of Salmonella

infection.5–7

Salmonella infection also induces antigen-specific CD4

T-cell, CD8 T-cell, and B-cell responses, all of which

can contribute to protective immunity. Many immuno-

deficient mouse strains are unable to control the in vivo

replication of attenuated Salmonella strains, providing a

reasonable model for determining the contribution of

different cell types to the primary immune response. For

example, nude, T-cell receptor ab-deficient, and major

histocompatibility complex (MHC) class-II deficient, mice

all succumb to infection with strains of attenuated

Salmonella that are normally eradicated in wild-type

mice.8–10 In marked contrast, mice lacking MHC class-I

restricted T cells, display no difference, or only a mild

defect in the resolution of primary infection with attenu-

ated Salmonella.9,11 Similarly, several groups have repor-

ted that mice lacking B cells are able to control primary

infection with attenuated Salmonella in a manner similar

to wild-type controls.12–14 At face value, these studies

would suggest that CD4 T cells are critical for resistance

to Salmonella, and that other lymphocyte populations are

relatively unimportant. However, these immunodeficient

mouse models do not paint a true picture of the
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Summary

Despite the current availability of Salmonella vaccines, typhoid fever

remains a significant public health problem in developing countries. A

greater understanding of T-cell activation and the development of immuno-

logical memory during Salmonella infection should lead to the development

of more effective prophylactic intervention. Here, we review recent

literature on the initiation, expansion and memory development of T-cell

responses using the mouse model of typhoid. We pay particular attention to

strategies for tracking T-cell responses in vivo and ex vivo, and suggest

models to integrate some these studies.

Keywords: T cell; Salmonella; bacteria; memory; vaccination

450 � 2005 Blackwell Publishing Ltd, Immunology, 114, 450–458

IMMUNOLOGY REV I EW ART ICLE



complexity of the host immune response to Salmonella.

In fact, the true requirements for immunity to murine

typhoid are apparent when re-infecting vaccinated mice

with virulent strains of Salmonella.

It has been known for some time that vaccination of

susceptible mice with attenuated strains of Salmonella

provides robust immunity to re-challenge with virulent

Salmonella.15 However, it has proved difficult to transfer

this protective immunity to naı̈ve recipients unless T cells

and serum antibodies are both transferred.16 Similarly,

MHC class-I-deficient and B-cell deficient mice resolve

initial infection with vaccine strains of Salmonella but,

unlike wild-type mice, this provides no protection against

re-challenge with virulent Salmonella.11–14 Thus, a greater

role for CD8 T cells and B cells is uncovered using a

model of re-challenge with virulent Salmonella than is

observed when infecting immunodeficient mice with

attenuated bacteria. Therefore, despite the simplicity of

the model system, it seems unlikely that infection of

immunodeficient mice with slow-growing Salmonella

provides an accurate model of the immune response to

typhoid fever, and results should be interpreted with

some caution. Together, the available data using the

mouse model point to a central role for CD4 T cells in

the development of protective immunity to Salmonella,

and an extremely important contributory role for both

CD8 T cells and B cells. Indeed, these data nicely parallel

work in human typhoid infection, where Salmonella-

specific CD8 T-cell and B-cell responses can be detected

following exposure to attenuated Salmonella, and are

likely to play an important role in mediating protective

immunity.17–21

The involvement of T-cell responses in mediating pro-

tective immunity to Salmonella infection has been appar-

ent for decades. However, a detailed examination of

Salmonella-specific T-cell activation has been lacking,

because in large part of restrictions in the tools that are

available in this model. The limited number of defined

class-I and class-II Salmonella epitopes makes any attempt

to examine Salmonella-specific T cells particularly challen-

ging.22 However, a number of recent studies have succee-

ded in examining the in vivo activation and expansion of

CD4 T during Salmonella infection cells by using T-cell

receptor (TCR) transgenic adoptive transfer systems.23

Of particular relevance is that some of these studies

have examined Salmonella-specific T-cell activation in

the intestine, the most likely physiological site of initial

activation.

Initial activation of naı̈ve Salmonella-specific
T cells

TCR transgenic adoptive transfer systems are an experi-

mental methodology that simply raises the frequency of

circulating antigen-specific T cells above the level of

detection for flow cytometric and immunohistological

analysis. Such systems are arguably the best immunologi-

cal tools for detailed analysis of naı̈ve T-cell activation

in vivo.24 The first study using this approach examined

the activation of ovalbumin (OVA)-specific, DO11.10

transgenic CD4 T cells after subcutaneous injection of a

Salmonella strain that was engineered to express OVA.25

OVA-specific T cells were found to have proliferated in

the local draining lymph node and acquired the ability to

secrete interferon-c (IFN-c) by 5 days after Salmonella-

OVA infection. This study therefore validated the useful-

ness of this methodology for examining the activation of

Salmonella-specific CD4 T cells in vivo.

A similar approach, but using a more physiological

route of infection, examined the activation of DO11.10

T cells in the Peyer’s patch in response to oral Salmon-

ella–OVA infection.26 In this case, Peyer’s patch OVA-

specific T cells were found to expand and contract with

slightly delayed kinetics compared to previous studies,

perhaps reflecting a lower initial antigen load in lymphoid

tissue when using the oral route. Immunohistology was

used to physically locate OVA-expressing bacteria and

activated OVA-specific CD4 T cells in the Peyer’s patch.

Interestingly, Salmonella remained in the subepithelial

dome (SED) region of the tissue, while OVA-specific

T cells were located exclusively in the interfollicular (IFR)

T-cell area. These data imply that some form of antigen

transport, from the SED to the IFR, is required to initiate

T-cell activation in the Peyer’s patch, as has been sugges-

ted in other model systems.27

Despite the utility and adaptability of using heterolo-

gous expression systems like Salmonella-OVA to track

T-cell activation to microbial infection, there are also

some limitations to this approach. The most obvious of

these being that OVA is clearly not a natural microbial

antigen. Thus, the data may not accurately reflect T-cell

activation to a natural bacterial antigen. In order to char-

acterize the response to a natural Salmonella epitope, a

TCR transgenic adoptive transfer system for tracking CD4

T-cell responses to Salmonella flagellin was developed.28

In agreement with earlier experiments using Salmonella–

OVA,26 Salmonella flagellin-specific T-cell activation was

observed in the Peyer’s patch after oral infection. Surpris-

ingly, Salmonella-specific CD4 T cells were activated to

express surface CD69 within 3 hr of oral infection and

produced maximal levels of interleukin-2 (IL-2), 9–12 hr

later.28 The rapidity of this T-cell response suggests that

the natural process of Salmonella antigen acquisition, pro-

cessing and presentation can be accomplished within a

couple of hrs after oral infection and has implications for

the mechanism of antigen presentation to Salmonella-

specific T cells in the Peyer’s patch.

Previous work suggested that dendritic cells in the Sal-

monella-infected Peyer’s patch may acquire bacterial anti-

gens from infected macrophages that had been induced to
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undergo apoptosis (Fig. 1a).29 However, it seems unlikely

that the process of macrophage infection, apoptosis,

engulfment by a myeloid dendritic cell in the SED, and

subsequent T-cell activation could be accomplished

within the short time frame noted in the flagellin–CD4

system. Therefore, it would be beneficial to consider some

alternative models of Salmonella antigen acquisition and

presentation in the Peyer’s patch.

Perhaps the simplest model would be that soluble bac-

terial antigens are excreted into the SED lymph fluid, and

that these flow rapidly to the IFR T-cell area without

need for any cellular transport (Fig. 1b). These bacterial

antigens could then be processed and presented by the

resident lymphoid dendritic cell population in the IFR,

already situated in close proximity to naı̈ve T cells.30 This

model has the distinct advantage in that it proposes no

anatomical scampering around the Peyer’s patch by either

dendritic or T-cell populations, and therefore has the

potential to be more rapid than models involving any cel-

lular chemotaxis. Furthermore, movement of lymph fluid

from the SED to IFR would be in general agreement with

currently understood models of the anatomy and lymph

circulation within the Peyer’s patch.31 Adding a slightly

unusual possibility to this simple model is the finding

that protease digestion of Salmonella flagellin coinciden-

tally gave rise to the exact minimal I-Ab binding epitope

recognized by Salmonella flagellin-specific T cells5,32

implying that this particular T-cell epitope is relatively

protease resistant. Therefore, although processing by

IFR resident dendritic cells seems more likely, is remains

possible that Salmonella flagellin is transported to the IFR

by lymph, processed by undefined extracellular proteases,

to rapidly give rise to the required I-Ab binding epitope

recognized by flagellin-specific T cells. Whatever the exact

mechanism of peptide generation, the rapid movement of

bacterial antigens to the IFR in lymph fluid seems a

reasonable model that would explain the kinetics of

Salmonella-specific CD4 T-cell activation noted in vivo.28

An alternative possibility is that myeloid dendritic cells

within the SED engulf and process Salmonella antigens

and subsequently carry them to T cells within the IFR

(Fig. 1c). This is similar to model-A except that it

requires no intermediary macrophage infection and apop-

tosis. Indeed we favour this particular model of antigen

presentation, as CCR6-deficient mice that lack a myeloid

dendritic population underlying the SED also display

deficiencies in the activation of Salmonella flagellin-speci-

fic T cells in the Peyer’s patch (Salazar-Gonzalez and

McSorley, unpublished observation). Another study has

already reported the relocation of SED dendritic cells to

the IFR in response to oral Salmonella infection, although

the rapidity of this process was not examined in any

detail.33 As flagellin itself has intrinsic proinflammatory

properties, it may actually provide the trigger that initi-

ates the exodus of dendritic cells from the SED.5,34–37 In

agreement with this hypothesis, flagellin stimulation of

intestinal epithelial cells in vitro was found to influence

the migration of dendritic cells through production of the

chemokine CCL20.38 To follow this idea further, it is

worth considering the possibility that flagellin epitopes

are preferentially processed and presented compared to

other Salmonella proteins which lack proinflammatory

properties.

It should be emphasized that each of these models of

Salmonella antigen presentation in the Peyer’s patch are

not mutually exclusive, and the only natural Salmonella

epitope that has been examined to date is found within a

highly expressed, secreted antigen with unusual pro-

inflammatory properties.37,39 Future experiments will

determine to what extent some combination of each of

these models accounts for Salmonella-specific T-cell acti-

vation in the Peyer’s Patch.

Expansion of Salmonella-specific effector T cells

Although Salmonella-specific CD4 T-cell activation is

quickly initiated in mucosal lymphoid tissues, bacteria are

able to escape this lymphoid tissue and penetrate to sys-

temic sites, most notably the spleen, liver, and bone mar-

row.40 In the face of intracellular microbial replication

and dissemination, it is vitally important for the host that

Salmonella-specific T cells are promptly expanded and

acquire effector functions. A number of recent studies

have examined the expansion of polyclonal T-cell

responses following Salmonella infection. Experiments by
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Figure 1. Possible pathways of antigen presentation in the Peyer’s

patch following Salmonella infection. (a) Myeloid dendritic cells

(DC) lining the subepithelial dome (SED) acquire the Salmonella

antigens released by apoptotic macrophages loaded with bacteria and

migrate to the interfollicular region (IFR) to effectively present the

antigen to T cells. (b) Salmonella entry into the Peyer’s patch leads

to the release of soluble bacterial antigens into the SED. These pro-

teins quickly disseminate to the IFR in lymph fluid, are acquired by

the resident lymphoid DC population, and subsequently presented to

the T cells. (c) Myeloid DCs in the SED acquire Salmonella antigens

directly following bacterial entry and migrate to the IFR for efficient

antigen presentation.
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Mittrucker et al. noted the surprising finding that the

majority of splenic CD4 and CD8 T cells in Salmonella-

infected resistant mice display an activated phenotype.41

Furthermore, many of these cells had gained the capacity

to secrete IFN-c in response to re-stimulation,41 a known

property of effector T cells.42 In agreement with these

data, other reports have described large numbers of Sal-

monella-specific CD4 and CD8 T cells following infection

of susceptible mice with attenuated Salmonella.43–45 Inter-

estingly, these studies suggest that the peak frequency of

Salmonella-specific CD4 T cells may be greater than 50%

of all CD4 T cells.44 Although such numbers are not unu-

sual when assessing the CD8 response to viral infec-

tion46,47 previous estimates of the clonal burst size of

CD4 T cells have been much lower in other models.48–50

Furthermore, one study has reported that CD4 T cells

and CD8 T cells have intrinsic differences in their prolif-

erative capacity.51 However, the available data from Sal-

monella infection demonstrate that massive peak CD4

responses can be detected in vivo. Whether this large

response actually represents extensive proliferation of Sal-

monella-specific naı̈ve T cells, or the recruitment of an

unusually large number of pre-existing pathogen-specific

T cells, remains to be determined. It is possible that an

elevated frequency of Salmonella-specific T cells will be

found in the T-cell repertoire of uninfected mice due to

cross-reactivity between Salmonella and endogenous gut

flora antigens, although this has yet to be demonstrated

experimentally.

Numerous studies have described the development of

CD4 and CD8 T cells that secrete IFN-c during Salmon-

ella infection.52,53 Indeed, one characteristic of the large

frequency of Salmonella-specific CD4 T cells noted in

recent studies is that many of these cells are able to pro-

duce IFN-c ex vivo.41,43–45 These data underline the

importance of IFN-c production to the generation of pro-

tective immunity in this model.9 In addition to the devel-

opment of effector cytokine production, many of these

activated Salmonella-specific T cells acquire the capacity

to migrate to non-lymphoid tissues such as the liver,45 a

major site of bacterial replication. Thus, during infection,

a Salmonella-specific effector population expands rapidly

in lymphoid tissues and redistributes effectively to the

major non-lymphoid sites of bacterial infection. However,

it should be noted that most of these studies have exam-

ined the effector function and migration of Salmonella-

specific T cells in response to attenuated bacteria, and the

T-cell response to virulent bacteria may differ. Indeed, a

deficiency in the migration of Salmonella-specific T cells

to non-lymphoid tissues was previously noted in mice

infected with virulent Salmonella.28 However, it is extre-

mely difficult to examine T-cell effector function and

migration when using a mouse model of acute infection

that is rapidly fatal. Perhaps future studies using virulent

Salmonella and antibiotic treatment will clarify whether

T-cell effector function and migration is compromised

following infection with virulent bacteria.

Given the reported magnitude of the polyclonal Sal-

monella-specific T-cell response41,44,45 one might imagine

that it would be easy to generate class-I and class-II

tetramer reagents to track Salmonella-specific responses

in vivo. However, as already noted above, the number of

naturally defined class-I and class-II epitopes in the

mouse model of Salmonella infection is somewhat limited.

For CD4 T cells there are only three defined Salmonella

epitopes, I-Ak/FliC 339-50,54 I-Ab/FliC 427-41,32 and

I-Ad/SipC 381-94.55 For CD8 T cells, two Kb peptide epi-

topes from outer membrane protein C56 and an epitope

presented by the class-Ib molecule Qa-157 have been

described. Aside from the limited number of epitopes

to choose from, the frequency of endogenous T-cell

responses to each of these defined epitopes is either

untested54–57 or found to be surprisingly low.32 Therefore,

identification of new class-I and class-II Salmonella epi-

topes, or better characterization of existing epitopes, is

required for the generation of tetramer reagents and a

more complete analysis of the endogenous T-cell response

to Salmonella infection.

It is not yet clear whether the large polyclonal popula-

tion of Salmonella-specific T cells consist of a small num-

ber of highly expanded clones responding to a few major

antigen specificities, or many small pools representing

numerous different clonotypes. The antibody response in

Salmonella-infected mice is clearly directed against many

different target antigens, including flagellin, lipoproteins,

and LPS.58 It seems likely that the T-cell response will be

similarly diverse. Flagellin remains the most consistently

identified target antigen of Salmonella-specific CD4 T cells

in vivo, and can confer limited protective immunity when

used in a subunit vaccine formulation.32,54,59,60 The most

thoroughly studied CD8 T-cell response in the mouse

model is directed against a GroEL peptide presented by

the MHC class Ib molecule Qa-1.11,57 CD8 T cells

responding to GroEL display an interesting cross-reactivity

to a peptide derived from mouse heat-shock protein-60,

although the functional significance of this cross-reactivity

for Salmonella infection is unclear. Recent innovative work

has managed to identify five new Salmonella proteins that

are controlled by highly expressed, in vivo inducible pro-

moters.61 The rationale for this approach was that by

identifying Salmonella proteins with these attributes, the

most likely targets for recognition by the adaptive immune

response would also be discovered. Indeed, this study

demonstrated that two of these proteins, Mig-14 and SseB

can mediate protective immunity when used as a subunit

vaccine. It therefore seems likely that T cells responding to

these antigens will comprise a fraction of the large Sal-

monella-specific CD4 cell response described above.41,44,45

However, at present the Salmonella target antigens recog-

nized by T cells remain incompletely defined.

� 2005 Blackwell Publishing Ltd, Immunology, 114, 450–458 453

T-cell responses to Salmonella infection



The role of B cells in relation to the expansion of

Salmonella-specific T cells remains unclear. Aside from

the requirement for B cells in mediating protective immu-

nity, it has also been reported that B-cell antigen presen-

tation to T cells can augment the Salmonella-specific CD4

response.12,62 During primary Salmonella infection, Sal-

monella-specific T cells initially expand within the T-cell

area of lymphoid tissues and are only observed to penetrate

B-cell follicles at a later stage.23,28 Therefore, anatomically,

B-cell antigen presentation to T cells is likely be a secon-

dary event to the initial activation mediated by dendritic

cells in the T-cell area of lymphoid tissues. Furthermore,

although vaccinated B-cell deficient mice succumb to

infection with virulent Salmonella, they also display a rea-

sonable degree of immunity when re-exposed to attenu-

ated Salmonella.13 The most likely explanation for this

protective immunity is that a Salmonella-specific effector

T-cell response can be generated in the absence of B cells,

although it is possible that it may be somewhat compro-

mised when compared to wild-type mice. It would also

seem likely that B-cell presentation to T cells would be

most clearly observed during a secondary infection, where

Salmonella-specific B cells are at an elevated frequency, or

following high-dose Salmonella challenge, when bacteria

have been found to associate more readily with B cells.43

However, at present these issues remain incompletely

resolved experimentally and it is possible that B cells

contribute to antigen presentation during Salmonella

infection.

Salmonella-specific memory T cells

Long-term immunity to pathogens is believed to reside

within the memory pool of T and B lymphocytes that can

persist for the lifetime of an individual.63 Despite the cur-

rent availability of live attenuated, and polysaccaride

vaccines, typhoid fever remains a significant health care

problem in developing nations. Therefore, a greater

understanding of the generation of immunological mem-

ory during Salmonella infection is critical to improving

current vaccine strategies.

Immunization of both humans and mice with live

attenuated Salmonella vaccine strains, leads to the genera-

tion of long lasting immunity and resistance to re-chal-

lenge.15,64 The ability of expanded polyclonal CD4 and

CD8 T cells to secrete IFN-c in response to Salmonella

antigens persists in the mouse model for at least

6 months after vaccination (Srinivasan and McSorley,

unpublished observation). Therefore, the generation of

immunological memory and protective immunity can

be a robust phenomenon after exposure to attenuated

Salmonella.

The Salmonella flagellin-specific TCR transgenic adopt-

ive transfer system has been used to examine the develop-

ment of memory CD4 T cells in Salmonella-infected mice.

In other model systems the adoptive transfer of TCR

transgenic T cells inhibits the expansion of endogenous

T cells with identical peptide/MHC specificity.65 However,

the expansion of a large endogenous CD4 response to

Salmonella actually inhibited the persistence of the SM1

T cells in vivo.44 The basis of this competition is not yet

clear, and may involve competition for T-cell growth or

survival factors such as IL-7.66,67 However, we favour a

modification of the model of Rollenhagen et al.61 where

persistent antigen presentation of Salmonella epitopes

in vivo may actually select clonotypes for survival to the

memory pool (Fig. 2). It has been reported that flagellin

expression is rapidly down-regulated by Salmonella grow-

ing in macrophages.68 Therefore, the presentation of this

particular Salmonella epitope may be limiting as the

infection progresses in vivo. In the face of intense compe-

tition with a massive endogenous Salmonella-specific pool

directed against other epitopes that are highly expressed

in vivo, SM1 T cells may fail to be selected for survival to

the memory pool. Experiments are currently underway in

our laboratory to test this hypothesis. It should be noted,

however, that such a model contrasts with previous work

with pathogen-specific CD8 T cells, where the peak

expansion frequency of a given T-cell clonotype correlates

well with the memory frequency.46

These limited observations on memory T-cell develop-

ment have some implications for vaccination against

typhoid fever. For example, the current dogma that live

attenuated Salmonella vaccines will always provide better

protective immunity than a subunit vaccine may be

incorrect. The success of live attenuated vaccines may

have more to do with the selective pressure placed upon

the expanded Salmonella-specific T-cell pool, than with

the nature of the vaccine itself. In other words, if the

antigenic targets of the Salmonella-specific memory T-cell

response could be elucidated, immunization with these

individual proteins may have the potential to be as pro-

tective as a live attenuated strain of Salmonella. Indeed,

Day 0

SM1
T cells

Endogenous
T cells

Day 3 Day 20

No
Memory

Memory

Figure 2. A model to explain the survival of certain antigen-specific

Salmonella-specific memory cells. SM1 cells are initially activated

(Day 0), expand (Day 3), but fail to get selected into the memory

pool because of an inadequate supply of flagellin peptide as the

infection progresses in vivo. Endogenous Salmonella specific T cells

directed against other antigenic epitopes expand and are successfully

selected to persist because of maintained antigen presentation.
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the recent studies by Rollenhagen et al. appear to validate

this hypothesis.61 This point is not trivial from a vaccine

standpoint, since the live attenuated typhoid vaccine is

not currently licensed in the US for children under the

age of 6 years old, primarily because of safety concerns

associated with a live vaccine.69,70 Therefore, the genera-

tion of a subunit vaccine that could reproduce the effic-

acy and long-term protection of a live Salmonella vaccine

would represent a considerable advance in vaccine devel-

opment, as it would be possible to target the most vulner-

able demographic with prophylactic intervention.

Evasion of Salmonella-specific T cell responses

Intracellular pathogens have developed numerous strat-

egies to gain access to the host and to survive under the

constant glare of a hostile immune system. Salmonella

have been variously described to actively interfere with

antigen processing and presentation71–74 induce apoptosis

of antigen-presenting cells29,75–79 and to generate an

immunosuppressive environment in vivo.80–82

The fact that Salmonella can infect dendritic cells of

diverse origin43,79,83–86 may indicate that the bacteria have

the capacity to directly inhibit the priming of naı̈ve

T cells. Indeed, one elegant study recently identified the

Salmonella yej operon as encoding a bacterial transporter

system that interferes with MHC class-I antigen presenta-

tion in macrophages.73 Although the exact mechanism of

this interference is not understood, it was proposed that

this transporter system might prevent peptide loading of

phagosomal MHC class I molecules by flooding the vacu-

ole with competing short peptides. Another recent report

demonstrated that Salmonella can avoid lysosomal degra-

dation and impair the antigen presentation properties of

dendritic cells.74 Interestingly, this process was blocked

in the presence of Salmonella-specific immunoglobulin G,

which binds FcgR on dendritic cells, and effectively tar-

gets bacteria to lysosomes. These data may shed light on

the requirement for serum antibody in protective immu-

nity to Salmonella infection. The role of antibody may

actually have less to do with the opsonization and clear-

ance of extracellular bacteria87 and more to do with the

inhibition of a specific bacterial process that can interfere

with naı̈ve T-cell activation.

The notion that Salmonella may interfere with the

activation of naı̈ve T cells fits nicely with data using the

Salmonella flagellin-specific adoptive transfer system.

Although Salmonella-specific T cells are efficiently activa-

ted following infection, this activation is highly dose

dependent.88 Indeed, flagellin specific SM1 cells were

found to be totally unresponsive after low dose infection

with virulent Salmonella, despite extensive bacterial repli-

cation in vivo.88 Infection with a live vaccine strain of

Salmonella also demonstrates the same sensitivity to chal-

lenge dose (Srinivasan and McSorley, unpublished data).

These data are reminiscent of human vaccine trials with

attenuated Salmonella that are usually poorly immuno-

genic unless administered in multiple doses with large

numbers of bacteria.64,89 It is possible that natural expo-

sure to low numbers of bacteria avoid detection by the

adaptive immune system, and that this can be attributed

to some of the evasion mechanisms discussed above. If

this turns out to be the case, the evasion properties of

Salmonella vaccine strains clearly need to be elucidated

and inhibited, as has already been described in the case of

the yej operon.73

Conclusion

Salmonella induce rapid and robust T-cell activation fol-

lowing infection of the mammalian host. The exact pro-

cesses involved in the initial activation, expansion, and

memory development of Salmonella-specific T cells are

beginning to be unravelled. It seems likely that the speed

and magnitude of the Salmonella-specific T cell effector

response has been underestimated and that this particular

model may be particularly suited to understanding T-cell

activation in response to infection. However, clearer iden-

tification of target antigens and an understanding of bac-

terial processes to inhibit T-cell activation are required in

the future. Addressing these issues is likely to lead to sig-

nificant improvements in current typhoid vaccine formu-

lations, or the generation of novel typhoid vaccines that

will be safer and more immunogenic than those currently

available.
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